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Abstract

A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and
characterization of defects and damage in nuclear graphite and composite structures in Very High Tempera-
ture Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity
Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR com-
ponents. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust,
non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based ap-
proach to the measurement of experimental waveforms in VHTR core components. In particular, this research
(1) deploys three-dimensional Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and
remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited
by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of
Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects – that permits
robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in
nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational
(finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear
graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact,
high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR
core components; and (5) applies the proposed methodology to VHTR core component samples (both two-
and three-timensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the
newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses all exist-
ing techniques for the 3D ultrasonic imaging of material damage from non-contact, limited-aperture waveform
measurements.

Outlook. The next stage in the development of this technology includes items such as (a) non-contact
generation of mechanical vibrations in VHTR components via thermal expansion created by high-intensity
laser; (b) development and incorporation of Synthetic Aperture Focusing Technique (SAFT) for elevating the
accuracy of 3D imaging in highly noisy environments with minimal accessible surface; (c) further analytical and
computational developments to facilitate the reconstruction of diffuse damage (e.g. microcracks) in nuclear
graphite as they lead to the dispersion of elastic waves, (d) concept of model updating for accurate tracking of
the evolution of material damage via periodic inspections; (d) adoption of the Bayesian framework to obtain
information on the certainty of obtained images; and (e) optimization of the computational scheme toward
real-time, model-based imaging of damage in VHTR core components.



Task 1: Manufacturing of damaged VHTR core components

As shown in Fig. 1, the damaged graphite specimens that were manufactured and tested during the course of
this investigation include:

• Plate-1, 364× 306× 20 mm, damage: 25 mm through hole

• Plate-2, 364× 306× 20 mm, damage: 25 mm through hole and 38 mm × 0.7 mm hairline crack

• Block-1, 364× 306× 172 mm, damage: 130× 26 mm cylindrical cavity
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Figure 1: Damaged graphite specimens, note the Block-1 specimen was painted with retroreflective paint to enhance
SLDV measurements.

Plate-1 was manufactured for an initial demonstration test dedicated to verifying the proposed approach
for discrete damage imaging in nuclear graphite. Plate-2 specimen features an additional “crack-like” damage
introduced at the circumference of the hole to simulate crack initiation under the load. Tests performed on
this specimen were dedicated to verifying the capacity of the proposed NDE approach to identify/image cracks
in graphite. Finally, Block-1 specimen was manufactured to check the method in a realistic 3D configuration
with a limited aperture of illuminating sources/registering receivers.

In addition to creating discrete defects an attempt was made to induce diffuse damage via uniaxial loading
of the plate specimen as shown in Fig. 2. Though in compression, the elastic solution for the circular opening
in an infinite medium (see formula below) features the tensile stress −T when θ = 0, π where crack initiation
was expected. The process of loading was accompanied by recording the acoustic emission (AE) activity near
the hole to confirm initiating of the micro cracks. With total of 4 sensors (attached to the back side of the
plate) about 50 AE events were registered during incremental increase of the load up to 18.5 MPa, however,
no visible material deterioration was identified after the loading was discontinued, see the display.
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Figure 2: Uniaxial loading test of the plate specimen.
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Task 2: CT scanning of damaged VHTR core components

In this task an auxiliary graphite block (187× 55× 68 mm) shown in Fig. 3 was scanned via micro-computed
tomography (CT) in order to determine the density distribution from the reconstructed 3D images.

300 slices
in 1 section

10 sections

(b)(a)

Figure 3: Graphite block scanned and analyzed using micro-CT: (a) photograph of the block, (b) schematic diagram
showing the division of the graphite block into 10 sections with 300 CT slices in each section.

Methods

The block in Fig. 3a was scanned a high-resolution micro-CT system [2]. The CT parameters used in the
scanning were: 120 kV voltage, 221µA, 33µm resolution, 1080 projections and 4 frames/projection. The
software ImageJ [1] was used for performing the analysis of the CT images. The gray values (g) were converted
to densities (ρ) assuming a linear relationship, with the minimum gray value representing a void in the block,
i.e. zero density, and the maximum gray value representing the maximum density region in the graphite:

gmin → ρ = 0 g/cm3 (1)

gmax → ρ = ρmax = 2.27 g/cm3 (2)

The relation between the density and the gray value is given as:

ρ =
ρmax

gmax − gmin

(g − gmin) (3)

The maximum density of the graphite ρmax = 2.27 g/cm3 is based on the theoretical value for defect-free
graphite [17]. The CT images contained a number of voxels with very high gray vales. These were thought
to be non-graphite impurities with high atomic numbers, or electronic noises from the X-ray detectors. Thus,
the maximum gray value for defect-free graphite gmax was obtained by calibration using the following relation:

ρ̄ =
ρmax

gmax − gmin

(ḡ − gmin) , (4)

where ρ̄ is the mean density (measured at 1.85 g/cm3) and ḡ is the mean gray value of the micro-CT image of
the entire graphite block. The porosity p was calculated using the following expression:

p = 1− ρ̄

ρmax

Figure 3b shows a schematic diagram of the graphite block divided into 10 sections, with each section being
comprised of 300 slices. For each of the sections, the gray value distribution and the mean density was
determined using (4). Figure 4a shows the 3D CT reconstruction of the graphite block and Figure 4b shows
the region of interest selected in the CT image for performing the analysis.

Results

Figure 5 shows the gray value distribution (pixel count vs. gray value) for a section of the graphite block. The
minimum gmin and maximum gmax gray values were determined to be 12334 and 17600 respectively. Figure 6
shows the variations of mass density and porosity in the graphite block with height. It can be seen that there
is a small gradual reduction in density towards the mid-height of the block.
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Figure 4: CT reconstruction of the graphite block: (a) full 3D reconstruction picture, (b) region of interest (yellow
rectangle) for performing the analysis of the CT image.

Figure 5: Gray value histogram for CT images in a section of the graphite block.
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Figure 6: Density profiles of the graphite block measured along the vertical direction in Fig. 3 in terms of: mass
density (left panel), and porosity (right panel).

Task 3: Inverse solution for 3D imaging and characterization of dam-
age

Over the past decade, the method of Topological Sensitivity (TS) has been shown to provide a simple non-
iterative approach to the wave-based imaging of defects in elastic media. Its strength lies in providing a
computationally efficient and robust way of identifying and geometrically reconstructing distinct inner het-
erogeneities (inclusions, voids, or cracks) without the need for prior information in the form of initial guess.
This task is an account of the results obtained, i) by generalizing TS method for the reconstruction of par-
tially closed cracks in elastodynamics, and, ii) by analyzing TS for the imaging of impenetrable (Dirichlet and
Neumann) obstacles in the high-frequency regime leading to a new reconstruction logic.

Ultrasonic imaging of discrete fractures

In this section, the capability of TS in determining the contact condition between the surfaces of a crack
embedded in an elastic medium is investigated, where a schematic illustration of this problem is provided in
Fig. 7. To this end, the inverse scattering of time-harmonic elastic waves by a smooth arbitrary-shaped crack
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Γ ⊂ B1 ⊂ R3, is considered, where the contact condition at the interface Γ± may vary e.g. be partially closed
(due to surface asperities), fluid filled, or traction free. It should be mentioned, B1 represents the sampling
region i.e. search area for the hidden crack. For the sake of brevity, in the following analysis we consider the
canonical case of illuminating the hidden crack in R3 by the plane incident wave ui; The action of which on
Γ results in the scattered field ũ observed in the form of

u(ξ) = ui(ξ) + ũ(ξ), ξ ∈ R3\Γ

known as the total field over a closed measurement surface Γobs. The reference medium is assumed to be
linear, elastic, isotropic and homogeneous which is characterized by mass density ρ, shear modulus µ and
Poisson’s ratio ν. In this setting, the scattered field ũ described by the following differential equation and its
associated boundary condition,

∇·[C:∇ũ](ξ) + ρω2 ũ(ξ) = 0, ξ ∈ R3\Γ (5)

t±[ũ](ξ) = ∓ K JũK(ξ)− tf±, ξ ∈ Γ±. (6)

where JũK = ũ+ − ũ− is the crack opening displacement (COD) and, C is the fourth-order elasticity tensor.
The effect of micro asperities can be considered as arbitrary spatial distributions of linear springs in both
normal and tangential directions described by a second-order, symmetric and positive definite stiffness tensor
K(ξ). In this study, the crack contact condition is modeled in the average sense, so that the stiffness matrix
is constant i.e. K(ξ) = K.

The cost functional for the TS analysis is least-squares based, and its first variation is asymptotically
calculated for the nucleation of an infinitesimal penny-shaped crack endowed with an arbitrary set of (normal
and tangential) constant interfacial stiffnesses, represented as the trial stiffness matrix Kt (see Fig. 7). The
resulting TS expression reads as the following,

T(ξ,Kt) = σ(ξ) : A: σ̂(ξ), (7)

where σ and σ̂ are two forward solutions for the reference domain, namely the incident field and the so-called
adjoint field (see [e.g. 13]). The elastic polarization tensor A is computed, via the dimensional analysis, in
terms of a suitable elastostatic solution for a unit crack with interfacial stiffness in R3 that is subjected to
constant stresses at infinity, and, can be expressed as follows

Figure 7: Arbitrarily shaped crack with interfacial stiffness illuminated by elastic waves.

A(µ, ν,Kt) = αs(n⊗ eβ + eβ ⊗ n)⊗ (n⊗ eβ + eβ ⊗ n) + αn(n⊗ n⊗ n⊗ n), β = 1, 2, (8)

where

αs =
4

3µ(2− ν)

1− ν2

ks + ν + 1
, αn =

8(1− ν)

3µ

2ν + 1

kn + 2ν + 1
,

and ks and kn are the trial shear and normal stiffness respectively i.e. Kt = kn(n⊗n) + ks(eβ ⊗ eβ), β = 1, 2.
n is the trial crack normal vector and eβ with β = 1, 2 are the corresponding tangential directions. With such
mathematical result, a computational platform based on the regularized boundary integral equation method
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for 3D elastodynamics is developed to simulate the experimental data and calculate the TS field over a range of
testing frequencies. Reconstructions based on the new TS formula shows that the location and normal vector
to the surface of a finite crack with interfacial stiffness are identifiable irrespective of the contact condition.
Fig. 8 shows the TS reconstruction of a partially closed penny shaped crack and its associated normal vector.
The crack is illuminated by sixteen low-frequency incident plane waves all around the unit sphere of incident
directions. It should be mentioned, the procedure takes advantage of the full aperture of measurements. The
true values of parameters are µ=1, ν=0.35 and ks=kn=3, while the trial crack is traction free i.e. the trial
contact variables are ks=kn=0.

yx

z

(b)

z

y

(c)

(a)

Figure 8: Reconstruction of a crack with interfacial stiffness, (a) three-dimensional representation of the true crack
(pink) and the truncated TS field (blue) (b) the identified normal vector of the crack (c) TS distribution in the
mid-section of the crack.

Having this initial information about the hidden crack, it is shown mathematically that useful information
about the crack interface can further be extracted non-iteratively from the two independent terms featured in
the newly obtained TS formula,

T(ξ, kn, ks) = − (αtrue
n αtrial

n T1 + αtrue
s αtrial

s T2), (9)

one is related to the normal crack stiffness and the other to its tangential counterpart. T1 and T2 in Eq. (9)
are related to Stokes fundamental solution and the free field stress distribution. Given this new interpretation,
one can qualitatively identity the interfacial condition – in the low-frequency regime – by comparing two
different TS distributions corresponding to the following trial contact parameters, i) kn = 0, ks →∞, and ii)
kn → ∞, ks = 0. The TS field experiencing the highest negative values (at the crack location) is affiliated
with the direction of the smallest interfacial stiffness (of the true crack). Fig. 9 illustrates the effectiveness
of this approach where the two fields T(ξ, 0, 50) and T(ξ, 50, 0) in the mid-section of the crack – whose the
geometry is shown in Fig. 8 (a) – are computed and compared for several contact situations i.e. when the true
crack is traction free, fluid filled and when kn << ks. From Fig. 9, one can clearly distinguish these contact
conditions from one another.

It is worth noting, in the case where similar situation prevails in both directions (normal and tangential),
e.g. the traction free case, the contribution of both terms in Eq. (9) to the final TS field is of the same order.

With reference to Fig. 10 (where the true scatterer is a cylindrical crack), as the frequency of the illuminat-
ing plane wave increases, the maximum negative TS values localize around the crack boundary which reveals
the shape reconstruction capability of topological sensitivity in the medium to high-frequency regime.

Fig. 11 represents the three-dimensional truncated TS reconstruction along with its distribution in the
mid-section of a penny shaped crack in the high frequency regime, where the illuminating wavelength is one
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Results

(a) (b) (c)

T(⇠, 0, 50) T(⇠, 0, 50) T(⇠, 0, 50)

T(⇠, 50, 0) T(⇠, 50, 0) T(⇠, 50, 0)

Figure 9: T1 and T2 distributions when the true crack is (a) traction free in both directions ks = kn = 0, (b) fluid-filled
(true ks << kn), (c) the true normal stiffness is much smaller than the shear stiffness kn << ks.

(b)(a)

Figure 10: TS reconstruction of a cylindrical crack, (a) the true crack (gray) (b) TS field in the crack mid-section.

half of the crack diameter. The true crack in Fig. 11 (a) and (b) is traction free, while the contact parameters
in (c) and (d) are kn = ks = 6. It appears that the TS behavior in high frequencies has a strong correlation
with the interfacial condition such that in the traction free case, the TS successfully reconstructs the crack tip
profile while in the case of partially closed crack, its surface is identified. This case is currently under further
investigations. As the first step toward understanding the TS high-frequency behavior, next section analyzes
anomaly reconstruction via topological sensitivity in acoustic scattering.

As a concluding remark it should be mentioned that the results obtained extend naturally to finite bodies
and other types of excitation, e.g. piezoelectric sources on the boundary (see [26]).

High-frequency imaging of material defects and damage by topological sensitivity

While testing nuclear graphite specimens at higher excitation frequencies where the illuminating (shear) wave-
length is smaller than characteristic defect size, it was found that the topological sensitivity (TS) does not
follow the expected behavior in that it does not attain pronounced negative values inside a material defect.
This is illustrated in Fig. 12 which plots the distribution of TS in an aluminum plate at 40 kHz (left panel)
and that in a solid block of nuclear graphite at 30 kHz (right panel). As can be seen from the display, the TS
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(b)(a)

(c) (d)

Figure 11: High-frequency behavior of the TS reconstruction in the case of traction free, (a),(b) and partially closed
(c),(d) cracks.

in such cases traces the the boundary of a defect rather than filling its interior. Motivated by this observation,
an effort was made to understand this behavior toward the quality assurance (QA) of damage characterization
and imaging by topological sensitivity.

To this end, the topological sensitivity is considered in the context of Helmholtz equation for imaging
anomalies in the high-frequency regime, where the germane wavelength is surpassed by the remaining length
scales in the problem.

Figure 12: the distribution of TS using experimental data, (a) in an aluminum plate at 40 kHz (left panel) and, (b) in
a solid block of nuclear graphite at 30 kHz (right panel).

It is assumed that the hidden obstacle D is convex and impenetrable, and that the measurements of the
scattered field are taken over a sphere whose radius is large relative to the size of the interrogated region. In
this setting, the formula for topological sensitivity – which quantifies the perturbation of a cost functional due
to introduction of a point-like scatterer – is expressed as a pair of nested surface integrals: one taken over
the boundary of a hidden obstacle, and the other over the measurement surface. Using multipole expansion,
the latter integral is reduced to a set of antilinear forms featuring the Green’s function and its gradient. The
remaining expression is distilled by evaluating the scattered field on the surface of an obstacle via Kirchhoff
approximation [5], and pursuing the asymptotic expansion of the remaining Fourier integral. In this way
the topological sensitivity is found to survive upon three asymptotic lynchpins, namely i) the near-boundary
approximation for sampling points close to the “exposed” surface of an obstacle; ii) uniform expansions
synthesizing the diffraction catastrophes for sampling points near caustic surfaces, lines, and points; and
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iii) non-uniform (stationary phase) approximation. Within the framework of the catastrophe theory [4, 23,
25, 6] it is shown that, in the case of the full source aperture, the topological sensitivity is asymptotically
dominated by the (explicit) near-boundary term,

T(ξ, β, γ) ' δ
πk

(k`)3

{3(1−β)

2+β

(
k` cos(k`)− sin(k`)

)2 − (1−βγ2) (k`)2 sin(k`)2
}

d(ξ, D) 6
2π

k
, (10)

where δ = +1,−1 respectively for Dirichlet and Neumann obstacles. k stands for the illuminating wave
number and ` denotes the normal distance of the sampling point ξ to the scatterer D. Moreover, β = ρ/ρtrial

and γ = c/ctrial synthesize the material characteristics of a trial obstacle. For the complete account of the
proof see [14]. Eq. (10) explains the previously reported reconstruction capabilities (e.g. see [7, 11]) and
the experimental observations in Fig. 12. This result further unveils the new reconstruction logic at short
wavelengths where the boundary of an anomaly is obtained as a zero level set of the TS field separating its
extreme negative and extreme positive values.

⇧

D

⇧

�obs

d k ⇧

⇧

⌦

d k⇧

S

(a) (b)

sampling
region

B�

⇣⇤2⇧

Figure 13: (a) sensing configuration, and (b) bifurcation set Bφ(d, ξ) ⊂ Ω with affiliated critical points ζ∗∈ S (dark
curves) for one sampling point. Loci d ‖Π and matching ζ∗ are shown in white (see [14]).

Figure 14: Distribution of TΠ(ξ, β, γ) for a Dirichlet obstacle probed by (β = 20, γ = 1) (top row), and Neumann
obstacle sampled by (β = 0, γ) (bottom row): full variation (left), thresholded distribution (middle), and example
near-boundary variation (right). The thin dashed line in panels (b) and (e) traces S ∩Π.

A numerical experiment is devised to illustrate the performance of TS in the high-frequency regime. The
sensing arrangement is shown in Fig. 13 (a) where D is an ellipsoidal anomaly with semi-axes (0.2, 0.08, 0.8)
and boundary S. The TS distribution is computed in the obstacle’s mid-section Π perpendicular to its major
axis, assuming incident plane waves with k = 300 (wavelength λ = 0.021) propagating in direction d ‖Π. It is
noted that the ellipsoid’s minimum radius of curvature is 0.032 ∼ 1.5λ.

The reconstruction of a Dirichlet obstacle via TΠ(ξ, 20, 1) is compared in Fig. 14 to that of a Neumann
anomaly by TΠ(ξ, 0, γ). Here the left, middle, and right panels plot respectively TΠ, thresholded TΠ, and
example near-boundary variation of TΠ (along the indicated normal) versus the asymptotically dominated
contribution reported in Eq. (10).
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For the sake of completeness, the high-frequency reconstruction of an onion-shaped (non-symmetric) ma-
terial defect by TS is shown in Fig. 16 where the full 3D source aperture is the unit sphere. The reconstructed
obstacle and its projections are shown in dark blue, while the contours enclosing the boundary of the true
scatterer is displayed in bright blue i.e. cyan on the sides for comparison.

To conclude this section, the new algorithm is applied to identify the boundary of a circular hole in
an aluminum plate from the recent set of elastodynamic experiments [26]. In this case the wave motion,
governed by the two-dimensional Navier equations, is induced in a bounded domain shown in Fig. 15(a) and
monitored along its top and side edges. The incident waves are generated by a piezoelectric transducer, placed
sequentially at five locations indicated in the diagram, such that the ratio of the illuminating wavelength to
the hole diameter is 0.85. Thus, the testing configuration is incompatible with the present analysis in several
aspects, including (i) dimensionality of the problem, (ii) type of the governing equation, (iii) geometry of the
anomaly-free domain, (iv) probing wavelength, and (v) aperture of the illuminating sources. Nonetheless the
reconstruction of a circular hole in panel (c), obtained by applying the new logic to the TS distribution [26]
showing in panel (b), is rather satisfactory.

Figure 15: Elastodynamic experiment in [26]: (a) testing setup, (b) five-sources TS field, and (c) true boundary
(dashed circle) versus its reconstruction (solid irregular line) obtained via Algorithm 1.

Figure 16: 3D high-frequency reconstruction of an onion-shaped material defect by Topological Sensitivity.
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Task 4: 3D simulation of the SLDV experiments

Based on the observations in Task 2 and Task 7, the intact nuclear graphite can be modeled as an isotropic
and homogeneous elastodynamic medium characterized by Young’s modulus E, Poisson’s ratio ν, or the
corresponding Lame constants λ= Eν

(1+ν)(1−2ν) , µ= E
2(1+ν) , and mass density ρ. Assuming no body forces arise

in the graphite, a transient elastodynamic problem is defined over domain Ω × [0, T ] through the system of
Navier equations:

∇ · (C:∇u) (ξ, t) = ρü(ξ, t), (ξ, t) ∈ Ω×[0, T ],

n · σ = t∗, (ξ, t) ∈ ΓN×[0, T ],

u = u∗, (ξ, t) ∈ ΓD×[0, T ],

u = u̇ = 0, ξ ∈ Ω, t = 0,

(11)

where C =λI2 ⊗ I2 + 2µIsym

4 is elastic stiffness tensor with Isym

4 and I2, respectively, denoting the symmetric
fourth-order and the second-order identity tensors. In this setting, the boundary of the domain ∂Ω is split
into Dirichlet ΓD and Neumann ΓN parts such that ∂Ω = ΓN ∪ ΓD, ΓN ∩ ΓD = 0. An initial boundary value
problem defined via (11) needs to be solved numerically twice with corresponding boundary conditions to
obtain the free and adjoint states, which can be computationally expensive in a 3D setting. However, for
the plate specimens Plate-1 and Plate-2 a plane stress assumption can be employed, in which a 3D problem
is effectively reduced to a 2D problem with the Young’s modulus E and Poisson’s ratio ν replaced by their
corresponding effective values E′ and ν′ [20]:

ν′ =
ν

1 + ν
E′ = E(1− ν′2) (12)

The validity of the plane stress assumption can be judged via the frequency content of the propagating waves
[26], namely the dominant observed wavelength must be significantly larger than the plate thickness (in this
case d = 20 mm). At this stage, however, it was assumed that the plate specimens can be modeled within the
plane stress approximation, as opposed to the three-dimensional configuration of the block specimen. As for
choosing appropriate boundary conditions, at this stage it is assumed that in a SLDV experiment dynamic
excitation is effected via contact piezo-ceramic transducer whose impact on the graphite specimen can be
modeled via corresponding Dirichlet boundary condition, while the rest of the specimen’s surface is assumed
traction-free, see further clarification in Task 8.

The numerical scheme chosen for solving (11) is a conventional FE method coupled with unconditionally-
stable Newmark scheme (β = 0.25, γ = 0.5). To reduce the cost of the simulations (especially in 3D), linear
elements were implemented, commonly known as constant-strain triangle (CST) elements (constant-strain
tetrahedron in 3D). To diminish the effects of numerical anisotropy and dispersion, dense unstructured meshes
featuring at least 12 elements per p-wavelength were employed, such that κ=

cp
fchmax

≥ 12, where hmax is the
maximum distance between the nodes of the mesh, and fc is the center frequency of the excitation wavelet,
see Task 6. For example, Fig. 17 shows the meshes generated for FE simulations of the fc =30 kHz wavefields
featuring κ = 15.1, 22.1, 13.8, respectively, for Plate-1, Plate-2, and Block-1 specimens. Note also that for
Plate-2 specimen the hole was included in the reference model to focus the reconstruction on imaging the
crack alone. In the generated meshes, additional nodes were also added to specific points on the surface of
the domain that correspond to the location of the scan points during subsequent SLDV testing to reduce the
effort of interpolating the input data. In case of 2D triangular meshes a simple MATLAB-implemented mesh
generator was utilized, while for 3D tetrahedron meshes an external package TetGen was employed. Following
[26], the time step ∆t of Newmark time integration was selected such that hmax

cp∆t = 1.45, while the duration

of simulations T =N∆t, where N is the required number of time steps, was conveniently measured in terms
of τ =W/cp – characteristic time required for a p-wave to travel the largest dimension of the specimen. For
example, evaluation of the free field state arising in Block-1 specimen excited at fc =30 kHz within the duration
T =6 τ requires N=480 time steps. For illustration, Fig. 18 shows the snapshots captured at t = 1.07 τ of the
horizontal velocity component v1 of the free field wavefields obtained at fc =30 kHz. Similarly, Fig. 19 shows
snapshots of the adjoint field velocities v̂1 captured at t = 1.2 τ .

As for FEM implementation, two different C++-based open source FE software packages were employed:
initially FreeFEM++ [24] was used, later replaced by FEniCS package [21]. Switching from FreeFEM++ to
FEniCS for both 2D and 3D simulations is advantageous in many ways. Developed by mathematical society,
FEniCS has better support in terms of preconditioners/linear solvers and various types of the elements as
compared to more “engineering” approach of FreeFEM++. Thus FEniCS is better suited for solving a large
number of degrees of freedom system such as arising in a 3D elastodynamic problem of Block-1. Specifically,
with the aid of built-in Jacobi preconditioner in FEniCS, inverting a 105-DOF system with Conjugate Gradient
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Figure 17: Examples of the reference meshes generated for FE simulations of fc = 30 kHz wavefields.

(CG) iterative solver is about 3 times faster compared to similar non-preconditioned solver in FreeFEM++.
Also, since FEniCS is also available in Python, an efficient interface to MATLAB is provided via SciPy add-on
which is especially helpful for storing and processing large FE/LDV data arrays.

Figure 18: FE-simulated snapshots of v1 velocity component of the fc =30 kHz free field wavefields.

Figure 19: FE-simulated snapshots of v̂1 velocity component of the fc =30 kHz adjoint field wavefields.
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Task 5: Verification of the TS inverse solution using synthetic data

For the case of spherical or (respectively, circular) discrete cavities nucleating in 3D (respectively, 2D plane
stress) isotropic elastic bodies the polarization tensor A is defined [12]:

A =
3(1− ν)

2µ(7− 5ν)

(
5Isym

4 − 1 + 5ν

2(1 + ν)
I2 ⊗ I2

)
(3D), (13)

A =
1

µ(1 + ν)

(
2Isym

4 − 2ν2 − ν + 1

2(1 + ν)(1− ν)
I2 ⊗ I2

)
(2D plane stress), (14)

while the TS formula, derived e.g. in [3], in the case of transient excitation takes the form:

T(z) = {σ̂ ? (A:σ) + ρv̂ ? v} (z), (15)

where [σ,v], [σ̂, v̂], respectively, are the stress-velocity field pairs, v = u̇, of the free and adjoint forward
elastodynamic states, and (?) denotes the Riemann convolution in time from t = 0 to t = T . On the basis
of numerical (synthetic) simulations, this task aims to identify the optimal testing configuration under which
formula (15) delivers best performance in terms of reconstructing voids in the damaged graphite specimens.
For generality, only Block-1 specimen is considered in this task.

For synthetic modeling, SLDV test (detailed in Task 9) performed at fc =30 kHz is taken as a basis in the
sense that the layout of the scan points and excitation sources are the same as in the actual test, while the
experimental SLDV data are replaced by true wavefield simulations on a “defective” mesh shown in Fig. 20.
Similar to the SLDV test, the true wavefield is modeled separately for each of the 7 transducer locations
shown on the display. In each single-source experiment, the transducer’s impact is reproduced via a Dirichlet
boundary condition interpolating the SLDV data obtained from corresponding scan points, while the rest of
the specimen is considered traction-free. Using thus obtained synthetic observations data as input, the free
and adjoint fields are simulated at durations ranging from T = τ to T = 6 τ . Following [26], adjoint field
virtual excitation is also time-windowed with a smoothing period ∆T = 0.25/fc = 8µs to avoid nonzero initial
conditions. Using (15), single-source TS distributions are calculated and subsequently summed up yielding
the final multi-source reconstruction maps.

W

⇠1
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yc

H

⇠2

x
z

y

Observations data scan points

1

2

3 4 5

6

7

⇠1

⇠2

⇠3
⇠1

⇠2

⇠3
Excitation source

Sources layout

Single-source test

Figure 20: Synthetic observations data reconstruction via “defective” FE mesh for Block-1 specimen.

To assess the quality of the TS-based reconstruction under various testing conditions, a parametric study
was conducted by varying: i) source aperture S ⊆ {1, 2, 3, 4, 5, 6, 7} signifying the collection of excitation
sources in Fig. 20, and ii) duration of the observation period T ∈ {τ, 2τ, . . . , 6τ}. Since computed TS fields
exhibit pronounced negative values in the immediate vicinity of ∂Ω [26] inherently leading to erroneous defect
reconstruction, the spatial distributions of the TS maps were truncated at distances d ≤ dtr = 25 mm from
the margins of the block.

Fig. 21 shows individual contributions of the first six sources to the reconstruction of the cavity defect
obtained at T = 6 τ , where the source position is indicated schematically via star-shaped markers. For better
visualization, the 3D TS maps are given in terms of several plane projections featuring two planes ξ1 = xc

and ξ2 = yc intersecting along the axis of the void, and 4 planes normal to the axis of the void located at
ξ3 =−0.4D, ξ3 =−0.5D, ξ3 =−0.6D, and ξ3 =−0.7D. To focus on the negative values of the TS, positive
values are not shown on the maps, while each plane projection is conveniently normalized to the minimum
value of −1. As seen from the display, single source maps are contaminated to various extent with spurious
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Figure 21: Contribution of individual sources to synthetic reconstruction of the cavity defect in Block-1 specimen
obtained at fc = 30 kHz, T = 6W/cp.

minima not affiliated with the void deteriorating the reconstruction. In general, summing up maps from
various sources helps level out such spurious minima while emphasizing the true minimum circumscribing the
defect, see Fig. 23.

Figure 22: The effect of duration T on synthetic reconstruction of the cavity defect in Block-1 specimen obtained at
full source aperture S = {1, 2, 3, 4, 5, 6, 7} and fc = 30 kHz.

The effect of duration of the observation period T is shown in Fig. 22, featuring TS maps obtained at
full source aperture and varying T in terms of characteristic time τ =W/cp, W = 364 mm. As pointed out in
[26], there are two competing phenomena that might affect the quality of TS reconstruction when changing
T . Firstly, there is a time scale Tb = 5/fc = 1.2τ affiliated with the duration of the excitation burst (see
Fig. 26) negatively affecting TS map when T ≤ 2Tb ' 2.4τ . On the other hand, there is the spurious wave
dispersion in the numerical FE solution, whose adverse effect accumulates with the distance traveled, i.e. with
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increasing duration T . In the case of synthetic testing, as opposed to the actual experiment in Task 9, the
latter effect is much less pronounced since numerical dispersion is effectively canceled by the fact that any
numerical infidelity introduced to the propagation of the free and adjoint wavefields will be present at the
same level in the true wavefield provided similar spatiotemporal discretizations of the true/reference domains.
Also known as inverse crime, this effect is specific to any inverse problem exposed to synthetic observations
data [9].

Figure 23: Full aperture, T = 6τ , fc = 30 kHz synthetic TS map obtained in Block-1 specimen. Planar views on the
right panel feature three mutually orthogonal projections: ξ1 =xc, ξ2 =yc, ξ3 =−0.5D, (xc, yc) being the center of the
cavity in ξ1–ξ2 plane.
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Task 6: Acquisition and implementation of the SLDV testing system

Boundary data acquisition is effected via a scanning LDV system PSV-400-3D by Polytec, Inc. By deploying
the principles of optical interferometry and three independent scanning heads targeting a material point from
different angles as shown in Fig. 24, the system is capable of capturing the normal and in-plane velocity
components of the surface motion over a prescribed grid of points with the spatial resolution better than
0.1 mm. The data acquisition is performed using a built-in velocity decoder VD-03 with the sensitivity and
sampling frequency Fs set respectively at 10 mm/s·V and 2.56 MHz. At these settings, the velocity resolution of
the LDV system is approximately 300µm/s for frequencies below 100 kHz, and the amplitude error is ±0.1 dB
at 1 kHz. To minimize the effect of random noise in the system (both optical and mechanical), signal stacking
is implemented over an ensemble of 50-100 realizations at each scan point. To avoid signal dropouts due to
inherent surface roughness, signal enhancement and speckle tracking are enabled during data acquisition. All
internal filters, both analogue and digital, were disabled to exclude phase-related errors in the observed surface
motion. The scan heads are positioned at stand-off distance of roughly 60-90 cm from the center of the object
such that all scan points can be reached by each unit with the deflection angle (i.e. the angle between the
laser beam and the axis of the scan head) less than 20 degrees. 3D alignment is performed conveniently with
the manufacturer-provided rangefinder device (geometry scan unit) that measures distances with the accuracy
about 2 mm. Given scan points lying on the plane (e.g., edge of a block), a sufficient accuracy of the 3D
alignment is reached with 4 reference points located in the farthest corners of the scan points area and at least
one more reference point set along the normal to the plane, about 15-30 cm toward the scan heads.

(b)(a)
External camera

Transducer Transducer

Figure 24: LDV setups for testing graphite with heads positioned on: a) floor tripods, b) table tripod.

Dynamic excitation

Dynamic excitation of the graphite unit is provided by either a 32 mm-diameter, 0.5 MHz (Olympus V101), or
a 16 mm-diameter, 1.0 MHz (Olympus V103) contact piezoceramic longitudinal wave transducer attached to
the graphite via cyanoacrylate glue. The 0.5 MHz transducer is used for specimens Plate-1 and Plate-2 and is
attached to a plate’s edge such that the axis of the transducer is approximately aligned with the mid-plane of
the plate (display (b)) thus minimizing the out-of-plane motion. The 1.0 MHz transducer is used for testing
Block-1 specimen and is attached to the graphite via a transfer rod with a cross-section reduction from 16 mm
to 6 mm, see display (a). The rod is intended to enable LDV accurately measure the excitation in all three
directions, see Task 8. The transducer is excited by a 5-cycle wavelets shown in Fig. 26 whose dominant
frequency fc ranged in the experiment from 10 kHz to 40 kHz. To generate the wave motion of sufficient
amplitude, the output from the signal generator is intensified by high-voltage, 2 kW radio-frequency amplifier
with the flat gain spectrum at 9-250 kHz.

32 mm
16 mm

6 mm

0.5 MHz, Olympus V1011.0 MHz, Olympus V103 (b)(a)
Laser spot

Figure 25: Piezoceramic transducers utilized for the excitation of: a) Plate-1, Plate-2, b) Block-1 specimens.
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Figure 5. Excitation wavelet s(t) with carrier frequency fc (left) and its Fourier amplitude spectrum
(right).

Figure 6. Frequency response of the 5–50 kHz band-pass FIR filter of order N = 1000.

noise embedded in the ‘raw’ velocity records, while its companion eliminates the spurious
low-frequency displacements arising as a consequence of temporal integration. Both velocity
and displacement signals were treated by a common band-pass filter between 5 and 50 kHz.
For the purpose of computing the TS distribution, it is critical that the filter does not distort
the phase of the motion data that are subsequently used to calculate the adjoint field in (8).
Accordingly, the particular filter adopted in this study was that of the finite impulse response
(FIR) type shown in figure 6, that has linear phase response and consequently does not distort
the phase of a transient signal.

4. Computational model and treatment

It is well known that FE simulation of elastodynamic problems, such as that deployed herein,
produces a number of spurious features in the numerical solution, including dispersion,
attenuation, anisotropy, and polarization of elastic waves [41, 42]. In the context of the present
study most such distortions, whose effect accumulates with travel distance, may pose a hurdle
for TS obstacle reconstruction when the observation interval T in (2) takes significant values

12

Figure 26: Excitation signal in the time and frequency domains.
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Task 7: Element testing of graphite specimens

Aimed at verifying the isotropic constitutive behavior of nuclear graphite and obtaining its elastic moduli,
several ultrasonic bench tests were performed on several intact graphite specimens. For Block-1 specimen,
the velocities of the compressional P- and shear S- waves were measured in a series of transmission tests
with transducers located on the opposite sides of the block yielding propagation in various directions. The
discrepancy between the registered velocities was less than 2% for P-wave and less than 1% for S-wave, which
within the accuracy of the measuring device renders isotropic behavior of the graphite. As for specifying the
elastic properties of the graphite, bench measurements were conducted at 1 MHz transmission on a selection
of auxiliary smaller graphite specimens not involved in the SLDV testing. The results, including the measured
quantities: mass density ρ, P-wave velocity cp, S-wave velocity cs, and the derived elastic moduli: Poisson’s
ratio ν, Young’s modulus E, and shear modulus µ, are presented in Table 1.

Sample ρ [kg/m3] cs [m/s] cp [m/s] ν E [GPa] µ [GPa]
1 1849 1578 2693 0.24 11.41 4.60
2 1832 1443 2605 0.28 9.76 3.82
3 1835 1445 2648 0.29 9.87 3.83
4 1845 1458 2676 0.29 10.11 3.92
5 1847 1597 2680 0.22 11.54 4.71
6 1835 1451 2610 0.28 9.86 3.86
7 1849 1448 2667 0.29 10.01 3.88
8 1849 1444 2614 0.28 9.87 3.86
9 1847 1462 2680 0.29 10.17 3.95

Table 1: Ultrasonic bench measurements of a selection of graphite specimens.

As seen from the table, most of the specimens yield similar elastic moduli except for samples 1 and 5 whose
Young’s moduli are about 15% higher than the average of the rest. Such discrepancy could be induced due to
manufacturing process. With the TS-based reconstruction, if the elastic properties of the reference medium
are not determined exactly, i.e. differ from the parameters of the tested material, the model wavefields will
develop a lag/advance with respect to propagation of the true ultrasound waves on top of any dispersion
existing in the numerical model itself. Thereby induced propagation error will affect the TS map in a linear
fashion since TS is a linear function of the dataset (15). To quantify the propagation error, one may use the
dimensionless ratio ∆T/T0, where ∆T is a phase shift of the model and T0 is a period of the wave. Since
∆T = |L/cp −L/cmod

p |, where cmod
p 6= cp is a model velocity, L - distance traveled by the wave, and T0 = 1/f -

period of the wave, f - frequency of the wave:

∆T

T0
= f

L

cmod
p

|cmod
p − cp|
cp

= fT
|cmod

p − cp|
cp

, (16)

where T = L/cmod
p is the duration of propagation. Therefore, the propagation error is proportional both to the

frequency of the illuminating wave, and the duration of propagation. Note that if reconstruction is performed
at high frequencies and longer durations, even small relative velocity error can produce significant propagation
error and lead to an erroneous TS map. To this end, additional ultrasonic tests were performed on the genuine
graphite specimens, results presented in Table 2. All three specimens were originally made out of a single
block and thus have the same properties further utilized in 2D and 3D FE models. One can notice that the
measured elastic moduli are similar to those of samples 1 and 5 in the bench tests. On the other hand, the
similar test conducted on another available graphite block specimen, not used for SLDV testing, showed elastic
properties closer to the rest of the bench test specimens.

Specimen ρ [kg/m3] cs [m/s] cp [m/s] ν E [GPa] µ [GPa]
Plate 1, Plate 2, Block 2 1842 1573 2725 0.25 11.4 4.56

Table 2: Ultrasonic measurements of the specimens from Task 1.
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Task 8: SLDV testing of damaged VHTR core components

SLDV data acquisition

Figs. 27 and 28 show testing setups for SLDV data acquisition from, respectively, Plate-1/Plate-2 and Block-1
specimens. During testing, special supports/props were employed to elevate the specimens above the ground
level minimizing non-traction-free surfaces: plate specimens 1 and 2 were secured in place (by own weight)
using contact patches at the bottom corners, while Block-1 specimen was set onto three legs located in the
vertices of an equilateral triangle (see display (a) in Fig. 28). Excitation was provided by the piezo transducers
(see Task 6) and the induced motion was monitored at a set of scan points on the surface of the graphite both
in terms of observations and excitation data.

3 mm prop

Transducer Laser spot

Figure 27: 2D SLDV data acquisition: Plate-1 and Plate-2 specimens.

back

left

26 mm

5 mm prop

back left

top
Transducer

(b)(a)

Left

Top

Right

Laser spot

Laser spot

Figure 28: 3D SLDV data acquisition: Block-1 specimen.

For the purpose of measuring excitation data, additional scan points were set in the vicinity of the trans-
ducer contact patch to collect the data further utilized in numerical simulations as input Dirichlet data. In
this vein, testing of Block-1 specimen (Fig. 28) required two different SLDV setups: for observations data
acquisition the scanning heads were set on a table tripod as shown in display (a), while the floor tripods were
employed for excitation data acquisition, display (b). The first setup allows quick relocation of the scan heads
for measurements on different sides of the block, while the second setup is only necessary for locating laser
beams on the transfer rod attached to the transducer. Note that the transfer rod enables to shoot the lasers
at a greater angle with respect to each other facilitating measurement with sufficient sensitivity in both lateral
and axial directions of the transducer’s motion (specifically, in display (b) the left laser can be set further apart
from the other two). Note also that the reduced output cross-section of the transfer rod (see also Fig. 25)
helps concentrate the impact of the transducer on a smaller patch thus enabling SLDV to measure excitation
more precisely. As for testing the plate specimens, both observations and Dirichlet data were collected in a
single experiment thanks to simplified 2D configuration of the units, see Fig. 27. To enhance backscattering
from graphite surface retroreflective tape was employed in locations of the scan points (visible in the figures),
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however, as shown in quarterly report 8, sufficient signal-to-noise ratio can be achieved on bare graphite surface
provided more elaborate laser focusing.

Obtained SLDV velocity signals were processed in MATLAB, namely band-pass filtered in the range
[0.5fc, 1.5fc], numerically integrated, and filtered again rendering noise free displacement data. An example
of thereby processed data obtained from the Block-1 specimen at excitation frequency fc = 30 kHz, is shown
in Fig. 29. An estimate of the relative error of the measured signals can be judged from the characteristics
of the utilized velocity decoder VD-03. In absence of mechanical/optical noises, the decoder yields velocity
uncertainty of ∆v = 300µm/s, the corresponding displacement uncertainty is ∆u = ∆v/Fs ≈ 0.1 nm. After
averaging over N independent realizations, the uncertainty is reduced by a factor of 1/N , rendering the relative
error for the signals at 1 nm amplitude (e.g., observations in Fig. 29) stacked at 50 realizations, on the order
of 0.2 %.
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Figure 29: 3D LDV data: Dirichlet excitation and observations

Comparison between the experimental SLDV and numerical FE model data

In order to assess the accuracy of the forward elastodynamic simulations the “true” field FE models were
utilized to simulate wave propagation in the damaged specimens Plate-1 and Block-1. In the simulations, the
SLDV-acquired excitation data were rendered as input Dirichlet data. The accuracy of the numerics was then
judged by comparing the FE-generated displacement time histories to the processed (filtered and integrated)
SLDV signals at several scan points. Shown in Fig. 30 and Fig. 31 are the displacement signals obtained with
fc =10 kHz excitation at three different scan points for, respectively, Plate-1 and Block-1 specimens. As seen
from the displays, chosen numerical platform allows to reconstruct the wavefields reasonably well even after
the P-wave travels 4–5 lengths of the specimen, i.e. up to durations T =5τ . Also, no significant change in the
wavefield records was registered, both in terms of LDV and FEM simulated data, when the location of the
aforementioned legs was altered which justifies the use of a simplified boundary conditions model when the
full surface of the specimen is assumed traction-free except for the excitation patch/section where Dirichlet
data are to be specified.
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Figure 30: 2D FE displacement data vs. SLDV experimental data in Plate-1 specimen.

1

2

0 0.1 0.2 0.3 0.4 0.5 0.6
−4
−2
0
2
4

t [ms]

u
1
[n

m
]

0 0.1 0.2 0.3 0.4 0.5 0.6
−4
−2
0
2
4

t [ms]

u
2
[n

m
]

0 0.1 0.2 0.3 0.4 0.5 0.6
−4
−2
0
2
4

t [ms]

u
3
[n

m
]

0 0.1 0.2 0.3 0.4 0.5 0.6
−4
−2
0
2
4

t [ms]

u
1
[n

m
]

0 0.1 0.2 0.3 0.4 0.5 0.6
−4
−2
0
2
4

t [ms]

u
2
[n

m
]

0 0.1 0.2 0.3 0.4 0.5 0.6
−4
−2
0
2
4

t [ms]

u
3
[n

m
]

3

0 0.1 0.2 0.3 0.4 0.5 0.6
−4
−2
0
2
4

t [ms]

u
1
[n

m
]

0 0.1 0.2 0.3 0.4 0.5 0.6
−4
−2
0
2
4

t [ms]

u
2
[n

m
]

0 0.1 0.2 0.3 0.4 0.5 0.6
−4
−2
0
2
4

t [ms]

u
3
[n

m
]

u
3
[n

m
]

u
1
[n

m
]

u
2
[n

m
]

u
3
[n

m
]

u
1
[n

m
]

u
2
[n

m
]

u
3
[n

m
]

u
1
[n

m
]

u
2
[n

m
]

1

23

transfer rod

Figure 31: 3D FE displacement data vs. SLDV experimental data in Block-1 specimen.

Discontinuous Galerkin upgrade of the finite element (FE) model

Further studies on FE modeling showed a great sensitivity of the simulated data to the spatiotemporal dis-
cretization of the numerical method especially at higher frequencies and longer simulation durations since the
chosen numerical scheme though computationally cheap and easy to implement, is not well suited for wave
propagation problems [18, 22]. To mitigate numerical infidelity several approaches are proposed in the litera-
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ture as how to enrich the FE formulation, see e.g. [15, 16]. On the other hand, a considerable attention has
been given to the development of Discontinuous Galerkin (DG) FE formulations [8]. A promising numerical
scheme in this case is so-called Arbitrary high-order DERivative Discontinuous Galerkin method (ADER-DG)
based on the hyperbolic formulation of the system of elastodynamics [19]. As an illustration of the capabil-
ities of this technique, a fundamental elastodynamic problem in an infinite graphite plate is simulated using
polynomials of 8th degree on a very coarse mesh (about 0.5 elements per wavelength) and compared to the
analytical wavefield function, see Fig. 32. Note that the numerical and analytical solutions almost match as far
as 7 wavelengths from the origin, i.e. almost no numerical dispersion is introduced to the simulated wavefield.
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Figure 32: Fundamental elastodynamic solution simulated with ADER-DG.
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Task 9: TS imaging and characterization of damage from SLDV
measurements

2D reconstruction in Plate-1 and Plate-2 specimens

As shown in Task 5 and previous numerical studies the performance of TS-based defect reconstruction is
strongly affected by the apertures of both source and observation grids. In particular, each of the two grids
should maximize the solid angle around the (expected) damaged region to make the best use of a fixed number
of experimental measurements. In this vein, the testing configuration adopted for the plate experiments is
shown in Fig. 33, consisting of four excitation patches (transducer locations), illuminating the hole/slit from
four directions as shown in display (a), while the induced elastodynamic wavefield is monitored over SLDV
scan points located in the immediate vicinity of the plate’s edges whose germane layout is shown in display (b).
In the experiment, the source transducer is first placed at location 1 and motion sensing is then performed at
the corresponding set of scan points (both observation and excitation) and the data thus obtained are used to
compute the free and adjoint elastodynamic states whose bilinear form (15) gives the affiliated TS distribution.
The source transducer is then moved to the second location, for which the testing and computational procedure
are performed anew. In what follows, the superposition of these individual TS distributions is used as a
reconstruction map.

To facilitate discussion on the influence of the duration and the excitation frequency on the quality of
the experimental TS reconstruction, the maps obtained at different fc and T are organized in tables shown
in Fig. 34 (Plate-1) and Fig. 35 (Plate-2). In the latter, the maps are only plot in the neighborhood of
the slit defect for better visualization. As seen from the first display, the hole defect is clearly detected in
terms of well-defined minimum on the fc = 10 kHz and 20 kHz maps while at higher center frequencies the
corresponding minimum is much less pronounced which is the consequence of numerical error introduced to
simulations due to presence of higher frequencies in the excitation spectrum (see Fig. 26). The latter not only
have adverse effect on the accuracy of the numerical scheme but might also be improperly approximated by the
plane stress assumption (see Task 4). Note also the effect of duration: at lower frequencies the maps improve
as T increases in accordance to the numerical studies in Task 5, however at higher frequencies increasing
duration T has a negative effect on the reconstruction maps as more error is accumulated in the numerical
simulations. In case of reconstructing the slit defect in Plate-2 specimen, Fig. 35, similar effects can be
observed, however lower frequency maps fc =10 kHz and 20 kHz provide poor evidence of the damage due to
insufficient interaction/scattering of the long wavelength illumination with the crack also obscured by the hole
defect. On the other hand, fc = 30 kHz map renders at T = 6τ much more accurate reconstruction of the
obstacle thanks to denser mesh (see Fig. 17) and, therefore, reduced numerical error. In addition, the negative
effect of duration T is somewhat minimized in this way, see also fc = 40 kHz maps.

Observations data scan points

1

2

3
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Dirichlet data scan points

⇠1
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1

(b)(a)
Excitation sources/transducer locations SLDV scan points

Laser spot

Figure 33: Scan points layout and transducer locations for testing Plate-1 and Plate-2 specimens.
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Figure 34: 2D TS maps obtained in Plate-1 specimen at different excitation frequencies fc and durations T .
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Figure 35: 2D TS maps obtained in Plate-2 specimen at different excitation frequencies fc and durations T .
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3D reconstruction in Block-1 specimen

Fig. 36 presents the configuration of the scan points and transducer locations for testing Block-1 specimen.
Here, the transducer (Fig. 25a) was consequentially attached to the left, top, and right edges of the block as
shown in display (a), while the wavefield motion was monitored on a set of scan points distributed over the
left, front, and right edges of the block, see display (b). The resulting reconstruction maps (obtained upon
summing the single-source TS distributions) are presented in Fig. 37 in terms of three planar views: ξ1 =xc,
ξ2 = yc, ξ3 = −0.5D with (xc, yc) denoting the center of the cavity in ξ1–ξ2 plane, and in Fig. 38 in terms
of three-dimensional assembly of these projections (positive values neglected) with normal planes added at
ξ3 = −0.4D, ξ3 = −0.6D, and ξ3 = −0.7D. Note the pronounced deterioration of the fc = 30 kHz map as
duration T increases above T = 5τ due to infidelity of the numerical model which in 3D case becomes more
sensitive to spatiotemporal discretization as the number of elements is dramatically increased, see Fig. 17.
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Figure 36: SLDV setup for testing Block-1 specimen.
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Figure 37: Planar views of the reconstruction maps obtained in Block-1 specimen at different excitation frequencies
fc and durations T .
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Figure 38: Reconstruction maps obtained in Block-1 specimen at different excitation frequencies fc and durations T .
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Task 10: Verification: comparison with CT scans

Since the Computed Tomography (CT) imaging in Task 2 of a nuclear graphite specimen with difffuse damage
(induced by uniaxial compression) did not yield any signs thereof, it was not fruitful to pursue the TS-SLDV
testing of that block. On the other hand, the damage in blocks that have been used for the TS-SLDV imaging
is of discrete type (as created by machining) – which by definition does not require verification by CT scanning.

On the detection of diffuse material damage. It is, however, hypothesized that the diffuse damage in quasi-
brittle materials, manifesting itself in the form of micro-cracks, could possibly be sensed by the macroscopic
(centimeter-long) elastic waves such as those featured in this project. To explore this possiblity, a prelim-
inary one-dimensional (experimental and analytical) study was performed to investigate the hypothesis. In
particular, it is shown [10] that the macroscopic waves may sense the presence of microscopic damage via
the dispersion of waves propagated through a diffusely-damaged material. This is shown in Fig. 39 which
shows the experimental setup, and Fig. 40 which illustrates the microstructure-induced dispersion (i.e. the
dependence of the wave speed on frequency) of elastic waves in the damaged section of an aluminum rod.

was glued to the left end of the rod, while the other end was glued
to a stationary wall as shown in Fig. 7. To compensate for the
weight of the transducer and connecting cable, an additional fish-
net loop was placed near the left end of the rod. For the purpose of
having a narrow-band input signal, the transducer was excited by a
modulated 5-cycle sine burst with carrier frequency fc as shown in
Fig. 9. A three-dimensional Laser Doppler Vibrometer (LDV) system
PSV-400 by Polytec, shown in Fig. 8, was used to capture the time
histories of the axial motion at scan points. Due to imperfections in
the weight distribution along the rod and misalignment of the
transducer, the motion generated in the rod included both longitu-
dinal and flexural waves. To facilitate the temporal separation be-
tween the longitudinal wave and its (slower) flexural counterpart,
the first set of observation points (referred to as the ‘‘scan points
before damage’’ in Fig. 7) were placed 60 cm away from the excita-
tion transducer, with 5 cm separation between the neighboring
points. To capture the dispersive behavior of longitudinal waves
traveling through the damaged section (i.e. the section with micro-
structure), the second set of observation points, again with 5 cm
separation, were located right after the series of two-sided rectan-
gular grooves that were approximately 0:3 cm deep as shown in
Fig. 7. A cross-correlation technique was used to determine the
phase shift between the measured signals before and after the
damaged section, using multiple scan points for better accuracy.
This information is then used to estimate the phase velocity at a gi-
ven carrier frequency fc. In this setting, the dispersion relationship
is constructed experimentally by repeating the measurements over
a representative set of carrier frequencies fc . To determine the va-
lue of the attenuation coefficient, the peak amplitudes before and
after the damaged section were utilized. Note that the amplitude
of the transmitted wave was also affected by the reflections from
the ends of the damaged section; within the band gap (where
the amplitudes matter), however, these reflections were found to
reduce the transmitted wave by roughly 5% and were consequently
disregarded. The three laser heads of the LDV system were posi-
tioned at an optimal distance of approximately 90 cm from the
rod, which allowed for the sensing of axial motion at all scan points
without readjusting. To increase the sensitivity of the non-contact
motion measurements and to accurately reconstruct the axial mo-
tion in the rod, the left and right laser heads were spread apart by
approximately 1 m (see Fig. 8). Each scan point was treated with a
small piece of retroreflective 3M tape (see Fig. 7) to enhance the
backscattering and improve the signal-to-noise characteristics of

the measured signals. The acquisition was performed using veloc-
ity decoder VD-03 with the sensitivity set to 10 mm/(s!V) and the
sampling rate Fs ¼ 2:56 MHz. For each scan point, signal stacking
over 50 realizations was used to minimize the effect of ambient
vibrations. All onboard LDV filters, both analog and digital, were
turned off to avoid systematic phase errors in the measurements.
Thus captured motion i.e. particle velocity signals were filtered
afterwards with a simple band-pass filter over the frequency inter-
vals ½0:2f c;3f c$ and ½0:95f c;1:05f c$, catering respectively for the
measurements of the phase velocity and attenuation coefficient.

To illuminate experimentally the physical meaning of the
length-scale parameters featured in the GE model, three rods were

Fig. 7. Schematics of the experimental setup.

Fig. 8. The LDV system used to capture the longitudinal motion (particle velocity)
in a rod.

Fig. 9. Normalized voltage of the input signal versus dimensionless time.
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Figure 39: Schematics of the experimental setup.

analytically; instead, the numerical treatment via the transfer ma-
trix approach (as in Section 3) is used to solve the problem and
consequently compute the parameters co;x1 and x2 that are
needed for the calibration of the GE model.

Rods with microstructure. To facilitate the interpretation of the
experimental measurements, it is noted with reference to Fig. 4
that the wave number k featured in the latter diagram can be con-
veniently written as

k ¼ x
cdam

" ia;

where cdam is the phase velocity of the longitudinal waves propa-
gated through the damaged section, and a P 0 is the attenuation
coefficient characterizing the affiliated exponential decay of wave
amplitude (if any). As an example, Fig. 13 plots the variation of the
normalized phase velocity in the damaged segment, cdam=cint, versus
frequency for the rod with L ¼ 1:9 cm. Due to the constraints im-
posed by the experimental approach, the carrier frequency fc of
the input signal is assumed to take the role of the excitation fre-
quency x=ð2pÞ. Here the normalization of the observed phase veloc-
ity by cint, computed via (28), allows one to ‘‘subtract’’ the dispersion
caused by the finite cross-sectional dimensions of the intact rod. As
before, the error bars reflect the standard deviation computed from
the measurements taken at different scan points. Note that the aug-
mented 1D model (the solid line in Fig. 13) features the transition
length ‘ ¼ 8:5 mm, found to provide the best fit with the experimen-
tal data. In general, ‘ shifts the dispersion curve of the 1D model in
the vertical direction without noticeably distorting its shape. The
gradient elastic model (13) with the length-scale parameters com-
puted according to (17) is indicated by the dashed line. In this case,
the parameters of gradient elasticity take values co ¼ 4375 m/s,
jlj ¼ 4:2 mm, h ¼ 1:24 mm, and s ¼ 4:2 mm. It is worth noting that
the featured length scales compare favorably with their low-con-
trast estimates (22) of jlj ¼ 4:3 mm, h ¼ 1:43 mm and s ¼ 4:3 mm,
despite the underpinning incompatibilities introduced by the aug-
mented 1D model. As can be seen from the display, the overall agree-
ment between the dispersion curves is admissible. Also note that
since 2‘ ¼ 17 mm > L=2 ¼ 9:5 mm, an overlapping of the transition
zones shown in Fig. 12 takes place in which case gðx0Þ < 1 through-
out the intact zone of the unit cell, see (29). In general, the approx-
imations introduced by the premise of one-dimensional wave
propagation, including those stemming from (29), are the main
cause of the discrepancies observed in Fig. 13.

Fig. 14 shows the results of the experimental measurements for
the rod with L ¼ 6 cm. The left panel plots the variation of the
phase velocity versus the carrier frequency, while the right panel
describes the corresponding variation of the attenuation

coefficient. The solid lines show the predictions of the augmented
1D model (‘ ¼ 8:5 mm), while the dashed lines indicate the corre-
sponding gradient elastic approximation. The calculated parame-
ters of gradient elasticity are co ¼ 4607 m/s, jlj ¼ 13:2 mm,
h ¼ 4:8 mm and s ¼ 13 mm. As a point of reference, it is noted that
the low-frequency approximation (22) in this case yields
jlj ¼ 13:5 mm, h ¼ 4:5 mm and s ¼ 13:5 mm. Clearly, the results
in Fig. 14 for L ¼ 6 cm are qualitatively different from those in
Fig. 13 for L ¼ 1:9 cm since the former feature a band gap (shown
as a shaded area) within the featured frequency range. As can be
seen from the display, the band gap features non-zero attenuation
coefficient and represents the transition zone between two
branches of phase velocity. Note that the magnitude of the disper-
sion in Fig. 14 (L ¼ 6 cm) is roughly an order of magnitude higher
than that in Fig. 13 (L ¼ 1:9 cm). Further, it is seen that the agree-
ment between the measurements and the 1D model at low fre-
quencies (below 25 kHz) is significantly better for L ¼ 6 cm than
for L ¼ 1:9 cm. This can be explained by the smaller contribution
of the ‘‘‘’’ correction, see (29), introduced by the augmented 1D
model. One may also note that the observed values of the phase
velocity in Fig. 14 seem to follow a smooth curve, which is not ob-
served by the model. The principal reason for such disagreement
resides in the multi-frequency nature of the transient pulse,
whereby each measurement point along the carrier frequency axis
represents an average between the neighboring frequencies. This
‘‘averaging’’ is one possible reason for the ‘‘smoothing’’ of experi-
mental data. Another possible reason for the observed discrepancy
is the presence of the 2D features (in terms of non-axial wave prop-
agation) that are not captured by 1D model. Regarding the attenu-
ation coefficient, the error bars in the right panel of Fig. 14 are
computed on the basis of the ratio between the observed motion
amplitude after the damaged section and the noise level. For this
reason, the error bars for the attenuation coefficient are higher in-
side the band gap since the amplitude of the signal reduces dra-
matically after passing through the damaged section.

Fig. 11. Variation of the longitudinal phase velocity versus frequency for the intact
rod.

Fig. 12. Schematics of the variation of the mass density (left) and the Young’s
modulus (right) over the unit cell of the augmented 1D model.

Fig. 13. Variation of the normalized phase velocity in the rod with L ¼ 1:9 cm.
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Figure 40: Variation of the phase velocity of longitudinal waves in a damaged section of the aluminum rod.
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Task 11: Comparison with existing NDE methodologies

For demonstration purposes, a series of A-scans were carried out in Block-1 specimen using an ultrasonic
test system James V-meter Mark II consisting of a pulse generator/oscilloscope, and two 54 kHz P-wave
piezoceramic transducers, see Fig. 41. The system was set to measure the direct transmission time of an
ultrasonic P-wave propagating along the largest dimension of the block with the transducer pairs located at
different heights along the left and right edges of the block, see display (b). As expected, the measured time-
of-flight experienced a jump when the transducers were set on the line intersecting the support of the cavity,
see display (c). In this way, only an approximate location in terms of height at which the defect is present
can be determined from the acquired data, while no information can be derived in terms of the size or the
shape of the defect. Given more source-receiver pairs one may, of course, obtain more information; however
in the limited aperture case that is relevant to the periodic inspection of in-service VHTR components, it is
impossible to reconstruct the defect from just the time-of-flight measurements – which is the key advantage
of the TS-based technique. Moreover, the accuracy of ultrasonic measurements is limited by the wavelength,
which is inversely proportional to the frequency of the transducer, so very high frequencies are required to
obtain good resolution reconstruction. In the elements of nuclear graphite however, higher frequencies might
experience reflections from the internal pores and thus affect the quality of the transmission test. In contrast,
the TS-based reconstruction operates with the so-called sub-wavelength resolution, i.e. the TS maps are
capable of imaging defects that are smaller the illuminating wavelength.
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Figure 41: Ultrasonic time-of-flight measurements in Block-1 specimen.
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